51 research outputs found

    Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    Get PDF
    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information

    Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate

    Full text link
    We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable 'nor' gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles

    Topological Boundary Constraints in Artificial Colloidal Ice

    Get PDF
    The effect of boundaries and how these can be used to influence the bulk behavior in geometrically frustrated systems are both long-standing puzzles, often relegated to a secondary role. Here, we use numerical simulations and 'proof of concept' experiments to demonstrate that boundaries can be engineered to control the bulk behavior in a colloidal artificial ice. We show that an antiferromagnetic frontier forces the system to rapidly reach the ground state (GS), as opposed to the commonly implemented open or periodic boundary conditions. We also show that strategically placing defects at the corners generates novel bistable states, or topological strings, which result from competing GS regions in the bulk. Our results could be generalized to other frustrated micro- and nanostructures where boundary conditions may be engineered with lithographic techniques

    Degeneracy and hysteresis in a bidisperse colloidal ice

    Get PDF
    We use numerical simulations to investigate the low-energy states of a bidisperse colloidal ice, realized by confining two types of magnetic particles into double wells of different lengths. For this system, theoretical calculations predict a highly degenerate ground state where all the vertices with zero topological charge have equal energy. When raising the applied field, we find a re-entrant transition where the system passes from the initial disordered state to a low-energy one and then back to disorder for large interaction strengths. The transition is due to the particle localization on top of the central hill of the double wells, as revealed from the position distributions. When we decrease the applied field, the system displays hysteresis in the fraction of low-energy vertices, and a small return point memory by cycling the applied field

    Emergent collective colloidal currents generated via exchange dynamics in a broken dimer state

    Get PDF
    Controlling the flow of matter down to micrometer-scale confinement is of central importance in material and environmental sciences, with direct applications in nano and microfluidics, drug delivery, and biotechnology. Currents of microparticles are usually generated with external field gradients of different nature (e.g., electric, magnetic, optical, thermal, or chemical ones), which are difficult to control over spatially extended regions and samples. Here, we demonstrate a general strategy to assemble and transport polarizable microparticles in fluid media through combination of confinement and magnetic dipolar interactions. We use a homogeneous magnetic modulation to assemble dispersed particles into rotating dimeric state and frustrated binary lattices, and generate collective currents that arise from a novel, field-synchronized particle exchange process. These dynamic states are similar to cyclotron and skipping orbits in electronic and molecular systems, thus paving the way toward understanding and engineering similar processes at different length scales across condensed matter

    Dynamical modes of sheared confined microscale matter

    Get PDF
    Based on (overdamped) Stokesian dynamics simulations and video microscopy experiments, we study the non equilibrium dynamics of a sheared colloidal cluster, which is confined to a two-dimensional disk. The experimental system is composed of a mixture of paramagnetic and non magnetic polystyrene particles, which are held in the disk by time shared optical tweezers. The paramagnetic particles are located at the center of the disk and are actuated by an external, rotating magnetic field that induces a magnetic torque. We identify two different steady states by monitoring the mean angular velocities per ring. The first one is characterized by rare slip events, where the inner rings momentarily depin from the outer ring, which is kept static by the set of optical traps. For the second state, we find a bistability of the mean angular velocities, which can be understood from the analysis of the slip events in the particle trajectories. We calculate the particle waiting- and jumping time distributions and estimate a time scale between slips, which is also reflected by a plateau in the mean squared azimuthal displacement. The dynamical transition is further reflected by the components of the stress tensor, revealing a shear-thinning behavior as well as shear stress overshoots. Finally, we briefly discuss the observed transition in the context of stochastic thermodynamics and how it may open future directions in this field
    • …
    corecore